2.3. Valves and nozzles

Use:

Air exhaust in low and medium pressure systems, in a non-aggressive environment of relative humidity up to 70%. Recommended for sanitary facilities for exhaust of used air.

Assembly:

On rectangular ducts in plenum boxes, in suspended ceilings and in walls. Fitted in an additional galvanized fitting frame

Construction:

Front frame and the disc baffle made of pressed steel sheet elements. Front frame is foam insulated to provide air tight fitting after mounting it with a fitting flange KM

Material:

Black steel sheet or stainless steel.

Surface finish

Standard RAL 9016 or other on demand

Air flow regulation:

By the means of turning the disc baffle which has a regulating screw welded to the valve. Air flow regulation carried out from the front side without the

necessity of dismantling the valve.

Certificates:

Atest higieniczny: HK/B/0637/01/2015

Type and dimension marking:

ZWW/ZWW-ko

ΚM

Products range:

sizes	ØD	Α	weight [g]	
80	115	31	150	
100	137	39	195	
125	164	44	310	
160	212	52	470	
200	248	55	660	

sizes	Ød	ØD1	weight (g)
80	79	118	40
100	99	125	50
125	124	155	65
160	159	186	100
200	199	230	140

2.3. Valves - technical data

Diagram for selection exhust valves ZWW

Noise characteristic of exhust valves ZWW

Noise level L

	Correctional coefficient Koct (dB)							
KE	Average frequency in octaves (Hz)							
	125	250	500	1000	2000	4000	8000	
80	1	-2	1	0	-3	-8	-16	
100	-2	-4	-3	0	-1	-15	-30	
125	4	3	1	-1	-3	-12	-22	
160	-1	0	1	0	-4	-13	-26	
200	0	-5	1	2	-13	-28	-32	
tol.±	3	2	2	2	2	2	3	

tol. - tolerance

We obtain noise level distribution after adding the Koct correctional coefficient given in the chart to the total acoustic pressure Lp10A, dB(A), according to the below formula

Lwoct = Lp10A + Koct

The value of the correctional coefficient Koct is the average value of frequency range (Hz).

Noise silencing

	Regulation	Noise silencing L							
KE (mm)		Average frequency in octaves (Hz)							
		63	125	250	500	1000	2000	4000	8000
80	-9	24	20	14	12	8	5	5	6
	0	24	19	13	9	6	3	4	5
	+12	24	19	13	9	5	2	3	4
100	-6	23	17	13	11	9	9	10	12
	0	23	17	12	9	7	7	7	9 7
	12	22	16	11	7	5	5	5	7
125	-12	21	15	12	11	8	9	12	11
	-3	20	15	10	8	6	6	6	10
	+6	21	14	9	7	4	4	6	8
160	-15	18	14	12	10	9	9	13	15
	-5	14	13	10	7	6	6	9	10
	15	14	13	8	5	4	4	7	7
	-20	17	13	11	9	8	10	13	11
200	+0	17	11	7	6	5 3	6	8	6 4
	+20	17	10	6	4	3	4	8	4
tol.±		6	3	2	2	2	2	2	3

tol. - tolerance

The chart provides the average noise silencing from the duct to the room accounting for the final sound reflection at the connector in case of fitting in a ceiling.